The two halves of CFTR form a dual-pore ion channel.
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) exhibits two conductance states, 9 picosiemens (pS) and 3 pS. To investigate the origin of these two distinct conductance states, we measured the single-channel activity of three truncated forms of CFTR. These include: TNR, which contains the first transmembrane domain, the first nucleotide binding domain, and the R domain; RT2N2, which contains the R domain, the second transmembrane domain, and the second nucleotide-binding domain; and T2N2, which contains only the second transmembrane domain and the second nucleotide-binding domain. The results show that TNR exhibits only the large conductance of 9.2 pS, whereas RT2N2 and T2N2 exhibit only the small conductance (3.8-4.0 pS). Co-expression of TNR with T2N2 resulted in a mixed pattern of two conductance states, which is similar to that observed in wild-type CFTR. In further studies, a "dual-R mutant," R334W and R347P in the transmembrane segment 6 of the first half of CFTR, severely impaired the large conductance channel without affecting the small conductance channel. The ion selectivity and gating behavior of the two conductance channels are different regardless of whether they are measured in wild-type CFTR or in truncated CFTRs. The ion selectivity of the large conductance channel is Br(-) > Cl(-) > I(-), whereas the ion selectivity of the small conductance channel is Br(-) = Cl(-) = I(-). The open probability (P(o)) of the large conductance is about 4-fold higher than that of the small conductance. Transition from closed to open states of the small conductance is not dependent upon the open or closed states of the large conductance. The independent behaviors of the two conductances in CFTR strongly suggest that CFTR may have two distinct pores. Thus, like ClC0, CFTR is likely to be a double-barreled ion channel, with the first half of CFTR forming the large conductance and the second half forming the small conductance.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملStructural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7)
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, but little is known about how this ion channel that harbors an uninterrupted ion permeation pathway evolves from a transporter that works by alternately exposing its substrate conduit to the two sides of the membrane. Here, we assessed reactivity of intracellularly a...
متن کاملIdentification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel.
Synthetic peptides with sequences representing putative transmembrane (M) segments of CFTR (the cystic fibrosis transmembrane conductance regulator) were used as tools to identify the involvement of such segments in forming the ionic pore of the CFTR Cl- channel. Peptides with sequences corresponding to M2 and M6 form anion-selective channels after reconstitution in lipid bilayers. In contrast,...
متن کاملStructure–activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporter superfamily that functions as an epithelial chloride channel. Gating of the CFTR ion conduction pore involves a conserved irreversible cyclic mechanism driven by ATP binding and hydrolysis at two cytosolic nucleotide-binding domains (NBDs): formation of an intramolecular NBD d...
متن کاملCystic Fibrosis Transmembrane Conductance Regulator
Description The cystic fibrosis transmembrane regulator (CFTR) gene codes for the CFTR protein; a chloride channel protein that helps in the transportation of chloride ions and water molecules across the cell membranes of lungs, liver, pancreas, and skin. CFTR is a member of the ATP-binding cassette family of membrane transport proteins, but appears to be unique within this family by functionin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 14 شماره
صفحات -
تاریخ انتشار 2000